evalml.pipelines.RFRegressionPipeline¶
-
class
evalml.pipelines.
RFRegressionPipeline
(parameters, random_state=0)[source]¶ Random Forest Pipeline for regression problems.
-
name
= 'Random Forest Regression Pipeline'¶
-
custom_name
= 'Random Forest Regression Pipeline'¶
-
summary
= 'Random Forest Regressor w/ One Hot Encoder + Simple Imputer'¶
-
component_graph
= ['One Hot Encoder', 'Simple Imputer', 'Random Forest Regressor']¶
-
problem_type
= 'regression'¶
-
model_family
= 'random_forest'¶
-
hyperparameters
= {'One Hot Encoder': {}, 'Random Forest Regressor': {'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}}¶
-
custom_hyperparameters
= None¶
-
default_parameters
= {'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Random Forest Regressor': {'max_depth': 6, 'n_estimators': 100, 'n_jobs': -1}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-