evalml.pipelines.RFRegressionPipeline

Inheritance diagram of RFRegressionPipeline
class evalml.pipelines.RFRegressionPipeline(parameters, random_state=0)[source]

Random Forest Pipeline for regression problems.

name = 'Random Forest Regression Pipeline'
custom_name = 'Random Forest Regression Pipeline'
summary = 'Random Forest Regressor w/ One Hot Encoder + Simple Imputer'
component_graph = ['One Hot Encoder', 'Simple Imputer', 'Random Forest Regressor']
problem_type = 'regression'
model_family = 'random_forest'
hyperparameters = {'One Hot Encoder': {}, 'Random Forest Regressor': {'max_depth': Integer(low=1, high=32, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}}
custom_hyperparameters = None
default_parameters = {'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Random Forest Regressor': {'max_depth': 6, 'n_estimators': 100, 'n_jobs': -1}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}

Instance attributes

feature_importance

Return importance associated with each feature.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

clone

Constructs a new pipeline with the same parameters and components.

describe

Outputs pipeline details including component parameters

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

graph_feature_importance

Generate a bar graph of the pipeline’s feature importance

load

Loads pipeline at file path

predict

Make predictions using selected features.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives