evalml.pipelines.CatBoostRegressionPipeline

Inheritance diagram of CatBoostRegressionPipeline
class evalml.pipelines.CatBoostRegressionPipeline(parameters, random_state=0)[source]

CatBoost Pipeline for regression problems. CatBoost is an open-source library and natively supports categorical features.

For more information, check out https://catboost.ai/

Note: impute_strategy must support both string and numeric data

name = 'Cat Boost Regression Pipeline'
custom_name = None
summary = 'CatBoost Regressor w/ Simple Imputer'
component_graph = ['Simple Imputer', 'CatBoost Regressor']
problem_type = 'regression'
model_family = 'catboost'
hyperparameters = {'CatBoost Regressor': {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=16, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['most_frequent']}}
custom_hyperparameters = {'Simple Imputer': {'impute_strategy': ['most_frequent']}}
default_parameters = {'CatBoost Regressor': {'bootstrap_type': None, 'eta': 0.03, 'max_depth': 6, 'n_estimators': 1000}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}

Instance attributes

feature_importance

Return importance associated with each feature.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

clone

Constructs a new pipeline with the same parameters and components.

describe

Outputs pipeline details including component parameters

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

graph_feature_importance

Generate a bar graph of the pipeline’s feature importance

load

Loads pipeline at file path

predict

Make predictions using selected features.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives