evalml.pipelines.CatBoostRegressionPipeline¶

-
class
evalml.pipelines.CatBoostRegressionPipeline(parameters, random_state=0)[source]¶ CatBoost Pipeline for regression problems. CatBoost is an open-source library and natively supports categorical features.
For more information, check out https://catboost.ai/
Note: impute_strategy must support both string and numeric data
-
name= 'Cat Boost Regression Pipeline'¶
-
custom_name= None¶
-
summary= 'CatBoost Regressor w/ Simple Imputer'¶
-
component_graph= ['Simple Imputer', 'CatBoost Regressor']¶
-
problem_type= 'regression'¶
-
model_family= 'catboost'¶
-
hyperparameters= {'CatBoost Regressor': {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=16, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['most_frequent']}}¶
-
custom_hyperparameters= {'Simple Imputer': {'impute_strategy': ['most_frequent']}}¶
-
default_parameters= {'CatBoost Regressor': {'bootstrap_type': None, 'eta': 0.03, 'max_depth': 6, 'n_estimators': 1000}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importanceReturn importance associated with each feature.
parametersReturns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-