evalml.pipelines.LinearRegressionPipeline¶
-
class
evalml.pipelines.
LinearRegressionPipeline
(parameters, random_state=0)[source]¶ Linear Regression Pipeline for regression problems.
-
name
= 'Linear Regression Pipeline'¶
-
custom_name
= None¶
-
summary
= 'Linear Regressor w/ One Hot Encoder + Simple Imputer + Standard Scaler'¶
-
component_graph
= ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', 'Linear Regressor']¶
-
problem_type
= 'regression'¶
-
model_family
= 'linear_model'¶
-
hyperparameters
= {'Linear Regressor': {'fit_intercept': [True, False], 'normalize': [True, False]}, 'One Hot Encoder': {}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}, 'Standard Scaler': {}}¶
-
custom_hyperparameters
= None¶
-
default_parameters
= {'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1, 'normalize': False}, 'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-