evalml.pipelines.LinearRegressionPipeline

Inheritance diagram of LinearRegressionPipeline
class evalml.pipelines.LinearRegressionPipeline(parameters, random_state=0)[source]

Linear Regression Pipeline for regression problems.

name = 'Linear Regression Pipeline'
custom_name = None
summary = 'Linear Regressor w/ One Hot Encoder + Simple Imputer + Standard Scaler'
component_graph = ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', 'Linear Regressor']
problem_type = 'regression'
model_family = 'linear_model'
hyperparameters = {'Linear Regressor': {'fit_intercept': [True, False], 'normalize': [True, False]}, 'One Hot Encoder': {}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}, 'Standard Scaler': {}}
custom_hyperparameters = None
default_parameters = {'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1, 'normalize': False}, 'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}

Instance attributes

feature_importance

Return importance associated with each feature.

parameters

Returns parameter dictionary for this pipeline

Methods:

__init__

Machine learning pipeline made out of transformers and a estimator.

clone

Constructs a new pipeline with the same parameters and components.

describe

Outputs pipeline details including component parameters

fit

Build a model

get_component

Returns component by name

graph

Generate an image representing the pipeline graph

graph_feature_importance

Generate a bar graph of the pipeline’s feature importance

load

Loads pipeline at file path

predict

Make predictions using selected features.

save

Saves pipeline at file path

score

Evaluate model performance on current and additional objectives