evalml.pipelines.RFBinaryClassificationPipeline¶
-
class
evalml.pipelines.
RFBinaryClassificationPipeline
(parameters, random_state=0)[source]¶ Random Forest Pipeline for binary classification.
-
name
= 'Random Forest Binary Classification Pipeline'¶
-
custom_name
= 'Random Forest Binary Classification Pipeline'¶
-
summary
= 'Random Forest Classifier w/ Simple Imputer + One Hot Encoder'¶
-
component_graph
= ['Simple Imputer', 'One Hot Encoder', 'Random Forest Classifier']¶
-
problem_type
= 'binary'¶
-
model_family
= 'random_forest'¶
-
hyperparameters
= {'One Hot Encoder': {}, 'Random Forest Classifier': {'max_depth': Integer(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}}¶
-
custom_hyperparameters
= None¶
-
default_parameters
= {'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Random Forest Classifier': {'max_depth': 6, 'n_estimators': 100, 'n_jobs': -1}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
parameters
Returns parameter dictionary for this pipeline
threshold
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-