evalml.pipelines.CatBoostBinaryClassificationPipeline¶
-
class
evalml.pipelines.
CatBoostBinaryClassificationPipeline
(parameters, random_state=0)[source]¶ CatBoost Pipeline for binary classification. CatBoost is an open-source library and natively supports categorical features.
For more information, check out https://catboost.ai/ Note: impute_strategy must support both string and numeric data
-
name
= 'Cat Boost Binary Classification Pipeline'¶
-
custom_name
= None¶
-
summary
= 'CatBoost Classifier w/ Simple Imputer'¶
-
component_graph
= ['Simple Imputer', 'CatBoost Classifier']¶
-
problem_type
= 'binary'¶
-
model_family
= 'catboost'¶
-
hyperparameters
= {'CatBoost Classifier': {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=4, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'Simple Imputer': {'impute_strategy': ['most_frequent']}}¶
-
custom_hyperparameters
= {'Simple Imputer': {'impute_strategy': ['most_frequent']}}¶
-
default_parameters
= {'CatBoost Classifier': {'bootstrap_type': None, 'eta': 0.03, 'max_depth': 6, 'n_estimators': 1000}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
parameters
Returns parameter dictionary for this pipeline
threshold
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-