evalml.pipelines.LogisticRegressionMulticlassPipeline¶
-
class
evalml.pipelines.
LogisticRegressionMulticlassPipeline
(parameters, random_state=0)[source]¶ Logistic Regression Pipeline for multiclass classification.
-
name
= 'Logistic Regression Multiclass Pipeline'¶
-
custom_name
= None¶
-
summary
= 'Logistic Regression Classifier w/ One Hot Encoder + Simple Imputer + Standard Scaler'¶
-
component_graph
= ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', 'Logistic Regression Classifier']¶
-
problem_type
= 'multiclass'¶
-
model_family
= 'linear_model'¶
-
hyperparameters
= {'Logistic Regression Classifier': {'C': Real(low=0.01, high=10, prior='uniform', transform='identity'), 'penalty': ['l2']}, 'One Hot Encoder': {}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}, 'Standard Scaler': {}}¶
-
custom_hyperparameters
= None¶
-
default_parameters
= {'Logistic Regression Classifier': {'C': 1.0, 'n_jobs': -1, 'penalty': 'l2'}, 'One Hot Encoder': {'categories': None, 'drop': None, 'handle_missing': 'error', 'handle_unknown': 'ignore', 'top_n': 10}, 'Simple Imputer': {'fill_value': None, 'impute_strategy': 'most_frequent'}}¶
Instance attributes
feature_importance
Return importance associated with each feature.
parameters
Returns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Constructs a new pipeline with the same parameters and components.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importance
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-