evalml.pipelines.XGBoostBinaryPipeline¶

-
class
evalml.pipelines.XGBoostBinaryPipeline(parameters, random_state=0)[source]¶ XGBoost Pipeline for binary classification
-
name= 'XGBoost Binary Classification Pipeline'¶
-
custom_name= 'XGBoost Binary Classification Pipeline'¶
-
summary= 'XGBoost Classifier w/ One Hot Encoder + Simple Imputer + RF Classifier Select From Model'¶
-
component_graph= ['One Hot Encoder', 'Simple Imputer', 'RF Classifier Select From Model', 'XGBoost Classifier']¶
-
problem_type= 'binary'¶
-
model_family= 'xgboost'¶
-
hyperparameters= {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'impute_strategy': ['mean', 'median', 'most_frequent'], 'max_depth': Integer(low=1, high=20, prior='uniform', transform='identity'), 'min_child_weight': Real(low=1, high=10, prior='uniform', transform='identity'), 'n_estimators': Integer(low=1, high=1000, prior='uniform', transform='identity'), 'percent_features': Real(low=0.01, high=1, prior='uniform', transform='identity'), 'threshold': ['mean', -inf]}¶
-
custom_hyperparameters= None¶
Instance attributes
feature_importancesReturn feature importances.
parametersReturns parameter dictionary for this pipeline
thresholdMethods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importances
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-