evalml.pipelines.CatBoostBinaryClassificationPipeline¶

-
class
evalml.pipelines.CatBoostBinaryClassificationPipeline(parameters, random_state=0)[source]¶ CatBoost Pipeline for binary classification. CatBoost is an open-source library and natively supports categorical features.
For more information, check out https://catboost.ai/ Note: impute_strategy must support both string and numeric data
-
name= 'Cat Boost Binary Classification Pipeline'¶
-
custom_name= None¶
-
summary= 'CatBoost Classifier w/ Simple Imputer'¶
-
component_graph= ['Simple Imputer', 'CatBoost Classifier']¶
-
problem_type= 'binary'¶
-
model_family= 'catboost'¶
-
hyperparameters= {'eta': Real(low=0, high=1, prior='uniform', transform='identity'), 'impute_strategy': ['most_frequent'], 'max_depth': Integer(low=1, high=16, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
-
custom_hyperparameters= {'impute_strategy': ['most_frequent']}¶
Instance attributes
feature_importancesReturn feature importances.
parametersReturns parameter dictionary for this pipeline
thresholdMethods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importances
Loads pipeline at file path
Make predictions using selected features.
Make probability estimates for labels.
Saves pipeline at file path
Evaluate model performance on objectives
-