evalml.pipelines.ETRegressionPipeline¶

-
class
evalml.pipelines.ETRegressionPipeline(parameters, random_state=0)[source]¶ Extra Trees Pipeline for regression problems
-
name= 'Extra Trees Regression Pipeline'¶
-
custom_name= 'Extra Trees Regression Pipeline'¶
-
summary= 'Extra Trees Regressor w/ One Hot Encoder + Simple Imputer'¶
-
component_graph= ['One Hot Encoder', 'Simple Imputer', 'Extra Trees Regressor']¶
-
problem_type= 'regression'¶
-
model_family= 'extra_trees'¶
-
hyperparameters= {'Extra Trees Regressor': {'max_depth': Integer(low=4, high=10, prior='uniform', transform='identity'), 'max_features': ['auto', 'sqrt', 'log2'], 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}, 'One Hot Encoder': {}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}}¶
-
custom_hyperparameters= None¶
Instance attributes
feature_importancesReturn feature importances.
parametersReturns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importances
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-