evalml.pipelines.ENRegressionPipeline¶

- 
class evalml.pipelines.ENRegressionPipeline(parameters, random_state=0)[source]¶
- Elastic Net Pipeline for regression problems - 
name= 'ENRegression Pipeline'¶
 - 
custom_name= None¶
 - 
summary= 'Elastic Net Regressor w/ One Hot Encoder + Simple Imputer'¶
 - 
component_graph= ['One Hot Encoder', 'Simple Imputer', 'Elastic Net Regressor']¶
 - 
problem_type= 'regression'¶
 - 
model_family= 'linear_model'¶
 - 
hyperparameters= {'Elastic Net Regressor': {'alpha': Real(low=0, high=1, prior='uniform', transform='identity'), 'l1_ratio': Real(low=0, high=1, prior='uniform', transform='identity')}, 'One Hot Encoder': {}, 'Simple Imputer': {'impute_strategy': ['mean', 'median', 'most_frequent']}}¶
 - 
custom_hyperparameters= None¶
 - Instance attributes - feature_importances- Return feature importances. - parameters- Returns parameter dictionary for this pipeline - Methods: - Machine learning pipeline made out of transformers and a estimator. - Outputs pipeline details including component parameters - Build a model - Returns component by name - Generate an image representing the pipeline graph - Generate a bar graph of the pipeline’s feature importances - Loads pipeline at file path - Make predictions using selected features. - Saves pipeline at file path - Evaluate model performance on current and additional objectives 
-