regression_pipeline#
Pipeline subclass for all regression pipelines.
Module Contents#
Classes Summary#
Pipeline subclass for all regression pipelines.  | 
Contents#
- class evalml.pipelines.regression_pipeline.RegressionPipeline(component_graph, parameters=None, custom_name=None, random_seed=0)[source]#
 Pipeline subclass for all regression pipelines.
- Parameters
 component_graph (ComponentGraph, list, dict) – ComponentGraph instance, list of components in order, or dictionary of components. Accepts strings or ComponentBase subclasses in the list. Note that when duplicate components are specified in a list, the duplicate component names will be modified with the component’s index in the list. For example, the component graph [Imputer, One Hot Encoder, Imputer, Logistic Regression Classifier] will have names [“Imputer”, “One Hot Encoder”, “Imputer_2”, “Logistic Regression Classifier”]
parameters (dict) – Dictionary with component names as keys and dictionary of that component’s parameters as values. An empty dictionary or None implies using all default values for component parameters. Defaults to None.
custom_name (str) – Custom name for the pipeline. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Example
>>> pipeline = RegressionPipeline(component_graph=["Simple Imputer", "Linear Regressor"], ... parameters={"Simple Imputer": {"impute_strategy": "mean"}}, ... custom_name="My Regression Pipeline") ... >>> assert pipeline.custom_name == "My Regression Pipeline" >>> assert pipeline.component_graph.component_dict.keys() == {'Simple Imputer', 'Linear Regressor'}
The pipeline parameters will be chosen from the default parameters for every component, unless specific parameters were passed in as they were above.
>>> assert pipeline.parameters == { ... 'Simple Imputer': {'impute_strategy': 'mean', 'fill_value': None}, ... 'Linear Regressor': {'fit_intercept': True, 'n_jobs': -1}}
Attributes
problem_type
ProblemTypes.REGRESSION
Methods
Determine whether the threshold of a binary classification pipeline can be tuned.
Constructs a new pipeline with the same components, parameters, and random seed.
Create objective instances from a list of strings or objective classes.
Custom name of the pipeline.
Outputs pipeline details including component parameters.
Importance associated with each feature. Features dropped by the feature selection are excluded.
Build a regression model.
Fit and transform all components in the component graph, if all components are Transformers.
Returns component by name.
Returns hyperparameter ranges from all components as a dictionary.
Generate an image representing the pipeline graph.
Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing component relationships. This dictionary is JSON serializable in most cases.
Generate a bar graph of the pipeline's feature importance.
Apply component inverse_transform methods to estimator predictions in reverse order.
Loads pipeline at file path.
Returns model family of this pipeline.
Name of the pipeline.
Constructs a new instance of the pipeline with the same component graph but with a different set of parameters. Not to be confused with python's __new__ method.
Parameter dictionary for this pipeline.
Make predictions using selected features.
Saves pipeline at file path.
Evaluate model performance on current and additional objectives.
A short summary of the pipeline structure, describing the list of components used.
Transform the input.
Transforms the data by applying all pre-processing components.
- can_tune_threshold_with_objective(self, objective)#
 Determine whether the threshold of a binary classification pipeline can be tuned.
- Parameters
 objective (ObjectiveBase) – Primary AutoMLSearch objective.
- Returns
 True if the pipeline threshold can be tuned.
- Return type
 bool
- clone(self)#
 Constructs a new pipeline with the same components, parameters, and random seed.
- Returns
 A new instance of this pipeline with identical components, parameters, and random seed.
- static create_objectives(objectives)#
 Create objective instances from a list of strings or objective classes.
- property custom_name(self)#
 Custom name of the pipeline.
- describe(self, return_dict=False)#
 Outputs pipeline details including component parameters.
- Parameters
 return_dict (bool) – If True, return dictionary of information about pipeline. Defaults to False.
- Returns
 Dictionary of all component parameters if return_dict is True, else None.
- Return type
 dict
- property feature_importance(self)#
 Importance associated with each feature. Features dropped by the feature selection are excluded.
- Returns
 Feature names and their corresponding importance
- Return type
 pd.DataFrame
- fit(self, X, y)[source]#
 Build a regression model.
- Parameters
 X (pd.DataFrame or np.ndarray) – The input training data of shape [n_samples, n_features]
y (pd.Series, np.ndarray) – The target training data of length [n_samples]
- Returns
 self
- Raises
 ValueError – If the target is not numeric.
- fit_transform(self, X, y)#
 Fit and transform all components in the component graph, if all components are Transformers.
- Parameters
 X (pd.DataFrame) – Input features of shape [n_samples, n_features].
y (pd.Series) – The target data of length [n_samples].
- Returns
 Transformed output.
- Return type
 pd.DataFrame
- Raises
 ValueError – If final component is an Estimator.
- get_component(self, name)#
 Returns component by name.
- Parameters
 name (str) – Name of component.
- Returns
 Component to return
- Return type
 Component
- get_hyperparameter_ranges(self, custom_hyperparameters)#
 Returns hyperparameter ranges from all components as a dictionary.
- Parameters
 custom_hyperparameters (dict) – Custom hyperparameters for the pipeline.
- Returns
 Dictionary of hyperparameter ranges for each component in the pipeline.
- Return type
 dict
- graph(self, filepath=None)#
 Generate an image representing the pipeline graph.
- Parameters
 filepath (str, optional) – Path to where the graph should be saved. If set to None (as by default), the graph will not be saved.
- Returns
 Graph object that can be directly displayed in Jupyter notebooks.
- Return type
 graphviz.Digraph
- Raises
 RuntimeError – If graphviz is not installed.
ValueError – If path is not writeable.
- graph_dict(self)#
 Generates a dictionary with nodes consisting of the component names and parameters, and edges detailing component relationships. This dictionary is JSON serializable in most cases.
x_edges specifies from which component feature data is being passed. y_edges specifies from which component target data is being passed. This can be used to build graphs across a variety of visualization tools. Template: {“Nodes”: {“component_name”: {“Name”: class_name, “Parameters”: parameters_attributes}, …}}, “x_edges”: [[from_component_name, to_component_name], [from_component_name, to_component_name], …], “y_edges”: [[from_component_name, to_component_name], [from_component_name, to_component_name], …]}
- Returns
 A dictionary representing the DAG structure.
- Return type
 dag_dict (dict)
- graph_feature_importance(self, importance_threshold=0)#
 Generate a bar graph of the pipeline’s feature importance.
- Parameters
 importance_threshold (float, optional) – If provided, graph features with a permutation importance whose absolute value is larger than importance_threshold. Defaults to zero.
- Returns
 A bar graph showing features and their corresponding importance.
- Return type
 plotly.Figure
- Raises
 ValueError – If importance threshold is not valid.
- inverse_transform(self, y)#
 Apply component inverse_transform methods to estimator predictions in reverse order.
Components that implement inverse_transform are PolynomialDecomposer, LogTransformer, LabelEncoder (tbd).
- Parameters
 y (pd.Series) – Final component features.
- Returns
 The inverse transform of the target.
- Return type
 pd.Series
- static load(file_path: Union[str, io.BytesIO])#
 Loads pipeline at file path.
- Parameters
 file_path (str|BytesIO) – load filepath or a BytesIO object.
- Returns
 PipelineBase object
- property model_family(self)#
 Returns model family of this pipeline.
- property name(self)#
 Name of the pipeline.
- new(self, parameters, random_seed=0)#
 Constructs a new instance of the pipeline with the same component graph but with a different set of parameters. Not to be confused with python’s __new__ method.
- Parameters
 parameters (dict) – Dictionary with component names as keys and dictionary of that component’s parameters as values. An empty dictionary or None implies using all default values for component parameters. Defaults to None.
random_seed (int) – Seed for the random number generator. Defaults to 0.
- Returns
 A new instance of this pipeline with identical components.
- property parameters(self)#
 Parameter dictionary for this pipeline.
- Returns
 Dictionary of all component parameters.
- Return type
 dict
- predict(self, X, objective=None, X_train=None, y_train=None)[source]#
 Make predictions using selected features.
- Parameters
 X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].
objective (Object or string) – The objective to use to make predictions.
X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only used for time series.
y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.
- Returns
 Predicted values.
- Return type
 pd.Series
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
 Saves pipeline at file path.
- Parameters
 file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- score(self, X, y, objectives, X_train=None, y_train=None)[source]#
 Evaluate model performance on current and additional objectives.
- Parameters
 X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features]
y (pd.Series, or np.ndarray) – True values of length [n_samples]
objectives (list) – Non-empty list of objectives to score on
X_train (pd.DataFrame or np.ndarray or None) – Training data. Ignored. Only used for time series.
y_train (pd.Series or None) – Training labels. Ignored. Only used for time series.
- Returns
 Ordered dictionary of objective scores.
- Return type
 dict
- property summary(self)#
 A short summary of the pipeline structure, describing the list of components used.
Example: Logistic Regression Classifier w/ Simple Imputer + One Hot Encoder
- Returns
 A string describing the pipeline structure.
- transform(self, X, y=None)#
 Transform the input.
- Parameters
 X (pd.DataFrame, or np.ndarray) – Data of shape [n_samples, n_features].
y (pd.Series) – The target data of length [n_samples]. Defaults to None.
- Returns
 Transformed output.
- Return type
 pd.DataFrame
- transform_all_but_final(self, X, y=None, X_train=None, y_train=None)#
 Transforms the data by applying all pre-processing components.
- Parameters
 X (pd.DataFrame) – Input data to the pipeline to transform.
y (pd.Series or None) – Targets corresponding to X. Optional.
X_train (pd.DataFrame or np.ndarray or None) – Training data. Only used for time series.
y_train (pd.Series or None) – Training labels. Only used for time series.
- Returns
 New transformed features.
- Return type
 pd.DataFrame