Exceptions#
Exceptions used in EvalML.
Submodules#
Package Contents#
Classes Summary#
Enum identifying the type of error encountered in partial dependence. |
|
Enum identifying the type of error encountered while applying a pipeline. |
|
Enum identifying the type of error encountered in holdout validation. |
Exceptions Summary#
Contents#
- exception evalml.exceptions.AutoMLSearchException[source]#
Exception raised when all pipelines in an automl batch return a score of NaN for the primary objective.
- exception evalml.exceptions.ComponentNotYetFittedError[source]#
An exception to be raised when predict/predict_proba/transform is called on a component without fitting first.
- exception evalml.exceptions.DataCheckInitError[source]#
Exception raised when a data check can’t initialize with the parameters given.
- exception evalml.exceptions.MethodPropertyNotFoundError[source]#
Exception to raise when a class is does not have an expected method or property.
- exception evalml.exceptions.MissingComponentError[source]#
An exception raised when a component is not found in all_components().
- exception evalml.exceptions.NoPositiveLabelException[source]#
Exception when a particular classification label for the ‘positive’ class cannot be found in the column index or unique values.
- exception evalml.exceptions.NullsInColumnWarning[source]#
Warning thrown when there are null values in the column of interest.
- exception evalml.exceptions.ObjectiveCreationError[source]#
Exception when get_objective tries to instantiate an objective and required args are not provided.
- exception evalml.exceptions.ObjectiveNotFoundError[source]#
Exception to raise when specified objective does not exist.
- exception evalml.exceptions.ParameterNotUsedWarning(components)[source]#
Warning thrown when a pipeline parameter isn’t used in a defined pipeline’s component graph during initialization.
- exception evalml.exceptions.PartialDependenceError(message, code)[source]#
Exception raised for all errors that partial dependence can raise.
- Parameters
message (str) – descriptive error message
code (PartialDependenceErrorCode) – code for speicific error
- class evalml.exceptions.PartialDependenceErrorCode[source]#
Enum identifying the type of error encountered in partial dependence.
Attributes
ALL_OTHER_ERRORS
all_other_errors
COMPUTED_PERCENTILES_TOO_CLOSE
computed_percentiles_too_close
FEATURE_IS_ALL_NANS
feature_is_all_nans
FEATURE_IS_MOSTLY_ONE_VALUE
feature_is_mostly_one_value
FEATURES_ARGUMENT_INCORRECT_TYPES
features_argument_incorrect_types
ICE_PLOT_REQUESTED_FOR_TWO_WAY_PLOT
ice_plot_requested_for_two_way_partial_dependence_plot
INVALID_CLASS_LABEL
invalid_class_label_requested_for_plot
INVALID_FEATURE_TYPE
invalid_feature_type
PIPELINE_IS_BASELINE
pipeline_is_baseline
TOO_MANY_FEATURES
too_many_features
TWO_WAY_REQUESTED_FOR_DATES
two_way_requested_for_dates
UNFITTED_PIPELINE
unfitted_pipeline
Methods
- name(self)#
The name of the Enum member.
- value(self)#
The value of the Enum member.
- exception evalml.exceptions.PipelineError(message, code, details=None)[source]#
Exception raised for errors that can be raised when applying a pipeline.
- Parameters
message (str) – descriptive error message
code (PipelineErrorCodeEnum) – code for specific error
details (dict) – additional details for error
- class evalml.exceptions.PipelineErrorCodeEnum[source]#
Enum identifying the type of error encountered while applying a pipeline.
Attributes
PREDICT_INPUT_SCHEMA_UNEQUAL
predict_input_schema_unequal
Methods
- name(self)#
The name of the Enum member.
- value(self)#
The value of the Enum member.
- exception evalml.exceptions.PipelineNotFoundError[source]#
An exception raised when a particular pipeline is not found in automl search results.
- exception evalml.exceptions.PipelineNotYetFittedError[source]#
An exception to be raised when predict/predict_proba/transform is called on a pipeline without fitting first.
- exception evalml.exceptions.PipelineScoreError(exceptions, scored_successfully)[source]#
An exception raised when a pipeline errors while scoring any objective in a list of objectives.
- Parameters
exceptions (dict) – A dictionary mapping an objective name (str) to a tuple of the form (exception, traceback). All of the objectives that errored will be stored here.
scored_successfully (dict) – A dictionary mapping an objective name (str) to a score value. All of the objectives that did not error will be stored here.
- class evalml.exceptions.ValidationErrorCode[source]#
Enum identifying the type of error encountered in holdout validation.
Attributes
INVALID_HOLDOUT_GAP_SEPARATION
invalid_holdout_gap_separation
INVALID_HOLDOUT_LENGTH
invalid_holdout_length
Methods
- name(self)#
The name of the Enum member.
- value(self)#
The value of the Enum member.