datetime_featurizer#
Transformer that can automatically extract features from datetime columns.
Module Contents#
Classes Summary#
Transformer that can automatically extract features from datetime columns.  | 
Contents#
- class evalml.pipelines.components.transformers.preprocessing.datetime_featurizer.DateTimeFeaturizer(features_to_extract=None, encode_as_categories=False, time_index=None, random_seed=0, **kwargs)[source]#
 Transformer that can automatically extract features from datetime columns.
- Parameters
 features_to_extract (list) – List of features to extract. Valid options include “year”, “month”, “day_of_week”, “hour”. Defaults to None.
encode_as_categories (bool) – Whether day-of-week and month features should be encoded as pandas “category” dtype. This allows OneHotEncoders to encode these features. Defaults to False.
time_index (str) – Name of the column containing the datetime information used to order the data. Ignored.
random_seed (int) – Seed for the random number generator. Defaults to 0.
Attributes
hyperparameter_ranges
{}
modifies_features
True
modifies_target
False
name
DateTime Featurizer
training_only
False
Methods
Constructs a new component with the same parameters and random state.
Returns the default parameters for this component.
Describe a component and its parameters.
Fit the datetime featurizer component.
Fits on X and transforms X.
Gets the categories of each datetime feature.
Loads component at file path.
Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
Returns the parameters which were used to initialize the component.
Saves component at file path.
Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns.
Updates the parameter dictionary of the component.
- clone(self)#
 Constructs a new component with the same parameters and random state.
- Returns
 A new instance of this component with identical parameters and random state.
- default_parameters(cls)#
 Returns the default parameters for this component.
Our convention is that Component.default_parameters == Component().parameters.
- Returns
 Default parameters for this component.
- Return type
 dict
- describe(self, print_name=False, return_dict=False)#
 Describe a component and its parameters.
- Parameters
 print_name (bool, optional) – whether to print name of component
return_dict (bool, optional) – whether to return description as dictionary in the format {“name”: name, “parameters”: parameters}
- Returns
 Returns dictionary if return_dict is True, else None.
- Return type
 None or dict
- fit(self, X, y=None)[source]#
 Fit the datetime featurizer component.
- Parameters
 X (pd.DataFrame) – Input features.
y (pd.Series, optional) – Target data. Ignored.
- Returns
 self
- fit_transform(self, X, y=None)#
 Fits on X and transforms X.
- Parameters
 X (pd.DataFrame) – Data to fit and transform.
y (pd.Series) – Target data.
- Returns
 Transformed X.
- Return type
 pd.DataFrame
- Raises
 MethodPropertyNotFoundError – If transformer does not have a transform method or a component_obj that implements transform.
- get_feature_names(self)[source]#
 Gets the categories of each datetime feature.
- Returns
 - Dictionary, where each key-value pair is a column name and a dictionary
 mapping the unique feature values to their integer encoding.
- Return type
 dict
- static load(file_path)#
 Loads component at file path.
- Parameters
 file_path (str) – Location to load file.
- Returns
 ComponentBase object
- needs_fitting(self)#
 Returns boolean determining if component needs fitting before calling predict, predict_proba, transform, or feature_importances.
This can be overridden to False for components that do not need to be fit or whose fit methods do nothing.
- Returns
 True.
- property parameters(self)#
 Returns the parameters which were used to initialize the component.
- save(self, file_path, pickle_protocol=cloudpickle.DEFAULT_PROTOCOL)#
 Saves component at file path.
- Parameters
 file_path (str) – Location to save file.
pickle_protocol (int) – The pickle data stream format.
- transform(self, X, y=None)[source]#
 Transforms data X by creating new features using existing DateTime columns, and then dropping those DateTime columns.
- Parameters
 X (pd.DataFrame) – Input features.
y (pd.Series, optional) – Ignored.
- Returns
 Transformed X
- Return type
 pd.DataFrame
- update_parameters(self, update_dict, reset_fit=True)#
 Updates the parameter dictionary of the component.
- Parameters
 update_dict (dict) – A dict of parameters to update.
reset_fit (bool, optional) – If True, will set _is_fitted to False.