evalml.pipelines.LinearRegressionPipeline¶

-
class
evalml.pipelines.LinearRegressionPipeline(parameters, random_state=0)[source]¶ Linear Regression Pipeline for regression problems
-
name= 'Linear Regression Pipeline'¶
-
custom_name= None¶
-
summary= 'Linear Regressor w/ One Hot Encoder + Simple Imputer + Standard Scaler'¶
-
component_graph= ['One Hot Encoder', 'Simple Imputer', 'Standard Scaler', 'Linear Regressor']¶
-
problem_type= 'regression'¶
-
model_family= 'linear_model'¶
-
hyperparameters= {'fit_intercept': [True, False], 'impute_strategy': ['mean', 'median', 'most_frequent'], 'normalize': [True, False]}¶
-
custom_hyperparameters= None¶
Instance attributes
feature_importancesReturn feature importances.
parametersReturns parameter dictionary for this pipeline
Methods:
Machine learning pipeline made out of transformers and a estimator.
Outputs pipeline details including component parameters
Build a model
Returns component by name
Generate an image representing the pipeline graph
Generate a bar graph of the pipeline’s feature importances
Loads pipeline at file path
Make predictions using selected features.
Saves pipeline at file path
Evaluate model performance on current and additional objectives
-