evalml.pipelines.components.LinearRegressor

class evalml.pipelines.components.LinearRegressor(fit_intercept=True, normalize=False, n_jobs=-1, random_state=0)[source]

Linear Regressor

name = 'Linear Regressor'
model_family = 'linear_model'
supported_problem_types = [<ProblemTypes.REGRESSION: 'regression'>]
hyperparameter_ranges = {'fit_intercept': [True, False], 'normalize': [True, False]}

Instance attributes

feature_importances

Returns feature importances.

Methods:

__init__

Initialize self.

describe

Describe a component and its parameters

fit

Fits component to data

predict

Make predictions using selected features.

predict_proba

Make probability estimates for labels.