evalml.guardrails.detect_id_columns¶
- 
evalml.guardrails.detect_id_columns(X, threshold=1.0)[source]¶
- Check if any of the features are ID columns. Currently performs these simple checks: - column name is “id” 
- column name ends in “_id” 
- column contains all unique values (and is not float / boolean) 
 - Parameters
- X (pd.DataFrame) – The input features to check 
- threshold (float) – the probability threshold to be considered an ID column. Defaults to 1.0 
 
- Returns
- A dictionary of features with column name or index and their probability of being ID columns 
 - Example - >>> df = pd.DataFrame({ ... 'df_id': [0, 1, 2, 3, 4], ... 'x': [10, 42, 31, 51, 61], ... 'y': [42, 54, 12, 64, 12] ... }) >>> detect_id_columns(df) {'df_id': 1.0}