IterativeAlgorithm.
__init__
An automl algorithm which first fits a base round of pipelines with default parameters, then does a round of parameter tuning on each pipeline in order of performance.
allowed_pipelines (list(class)) – A list of PipelineBase subclasses indicating the pipelines allowed in the search. The default of None indicates all pipelines for this problem type are allowed.
max_iterations (int) – The maximum number of iterations to be evaluated.
tuner_class (class) – A subclass of Tuner, to be used to find parameters for each pipeline. The default of None indicates the SKOptTuner will be used.
random_state (int, np.random.RandomState) – The random seed/state. Defaults to 0.
pipelines_per_batch (int) – the number of pipelines to be evaluated in each batch, after the first batch.
n_jobs (int or None) – Non-negative integer describing level of parallelism used for pipelines.
number_features (int) – The number of columns in the input features.
ensembling (boolean) – If True, runs ensembling in a separate batch after every allowed pipeline class has been iterated over. Defaults to False.
pipeline_params (dict or None) – Pipeline-level parameters that should be passed to the proposed pipelines.