evalml.pipelines.components.PerColumnImputer

class evalml.pipelines.components.PerColumnImputer(impute_strategies=None, default_impute_strategy='most_frequent', random_state=0, **kwargs)[source]

Imputes missing data according to a specified imputation strategy per column

name = 'Per Column Imputer'
model_family = 'none'
hyperparameter_ranges = {}
default_parameters = {'default_impute_strategy': 'most_frequent', 'impute_strategies': None}

Instance attributes

needs_fitting

parameters

Returns the parameters which were used to initialize the component

Methods:

__init__

Initializes a transformer that imputes missing data according to the specified imputation strategy per column.”

clone

Constructs a new component with the same parameters

describe

Describe a component and its parameters

fit

Fits imputers on input data

fit_transform

Fits imputer and imputes missing values in input data.

load

Loads component at file path

save

Saves component at file path

transform

Transforms input data by imputing missing values.

Class Inheritance

Inheritance diagram of PerColumnImputer