import warnings import numpy as np from sklearn.linear_model import SGDClassifier as SKElasticNetClassifier from skopt.space import Real from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes [docs]class ElasticNetClassifier(Estimator): """Elastic Net Classifier.""" name = "Elastic Net Classifier" hyperparameter_ranges = { "alpha": Real(0, 1), "l1_ratio": Real(0, 1), } model_family = ModelFamily.LINEAR_MODEL supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS] [docs] def __init__(self, alpha=0.5, l1_ratio=0.5, n_jobs=-1, max_iter=1000, random_state=0, penalty='elasticnet', **kwargs): parameters = {'alpha': alpha, 'l1_ratio': l1_ratio, 'n_jobs': n_jobs, 'max_iter': max_iter, 'penalty': penalty} if kwargs.get('loss', 'log') != 'log': warnings.warn("Parameter loss is being set to 'log' so that ElasticNetClassifier can predict probabilities" f". Originally received '{kwargs['loss']}'.") kwargs["loss"] = "log" parameters.update(kwargs) en_classifier = SKElasticNetClassifier(random_state=random_state, **parameters) super().__init__(parameters=parameters, component_obj=en_classifier, random_state=random_state) @property def feature_importance(self): coef_ = self._component_obj.coef_ # binary classification case if len(coef_) <= 2: return coef_.flatten() else: # multiclass classification case return np.linalg.norm(coef_, axis=0, ord=2)