Source code for evalml.pipelines.components.estimators.classifiers.decision_tree_classifier

from sklearn.tree import DecisionTreeClassifier as SKDecisionTreeClassifier
from skopt.space import Integer

from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes


[docs]class DecisionTreeClassifier(Estimator): """Decision Tree Classifier.""" name = "Decision Tree Classifier" hyperparameter_ranges = { "criterion": ["gini", "entropy"], "max_features": ["auto", "sqrt", "log2"], "max_depth": Integer(4, 10) } model_family = ModelFamily.DECISION_TREE supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS, ProblemTypes.TIME_SERIES_BINARY, ProblemTypes.TIME_SERIES_MULTICLASS]
[docs] def __init__(self, criterion="gini", max_features="auto", max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, random_state=0, **kwargs): parameters = {"criterion": criterion, "max_features": max_features, "max_depth": max_depth, "min_samples_split": min_samples_split, "min_weight_fraction_leaf": min_weight_fraction_leaf} parameters.update(kwargs) dt_classifier = SKDecisionTreeClassifier(random_state=random_state, **parameters) super().__init__(parameters=parameters, component_obj=dt_classifier, random_state=random_state)