import json from .binary_classification_pipeline import BinaryClassificationPipeline from .multiclass_classification_pipeline import ( MulticlassClassificationPipeline ) from .regression_pipeline import RegressionPipeline from .time_series_regression_pipeline import TimeSeriesRegressionPipeline from evalml.model_family import ModelFamily from evalml.pipelines import PipelineBase from evalml.pipelines.components import ( # noqa: F401 CatBoostClassifier, CatBoostRegressor, ComponentBase, DateTimeFeaturizer, DropNullColumns, Estimator, Imputer, OneHotEncoder, RandomForestClassifier, StackedEnsembleClassifier, StackedEnsembleRegressor, StandardScaler, TextFeaturizer ) from evalml.pipelines.components.utils import all_components, get_estimators from evalml.problem_types import ProblemTypes, handle_problem_types from evalml.utils import get_logger from evalml.utils.gen_utils import _convert_to_woodwork_structure logger = get_logger(__file__) def _get_preprocessing_components(X, y, problem_type, text_columns, estimator_class): """Given input data, target data and an estimator class, construct a recommended preprocessing chain to be combined with the estimator and trained on the provided data. Arguments: X (ww.DataTable): The input data of shape [n_samples, n_features] y (ww.DataColumn): The target data of length [n_samples] problem_type (ProblemTypes or str): Problem type text_columns (list): feature names which should be treated as text features estimator_class (class): A class which subclasses Estimator estimator for pipeline Returns: list[Transformer]: A list of applicable preprocessing components to use with the estimator """ X_pd = X.to_dataframe() pp_components = [] all_null_cols = X_pd.columns[X_pd.isnull().all()] if len(all_null_cols) > 0: pp_components.append(DropNullColumns) pp_components.append(Imputer) if text_columns: pp_components.append(TextFeaturizer) datetime_cols = X.select(["Datetime"]) add_datetime_featurizer = len(datetime_cols.columns) > 0 if add_datetime_featurizer: pp_components.append(DateTimeFeaturizer) # DateTimeFeaturizer can create categorical columns categorical_cols = X.select('category') if (add_datetime_featurizer or len(categorical_cols.columns) > 0) and estimator_class not in {CatBoostClassifier, CatBoostRegressor}: pp_components.append(OneHotEncoder) if estimator_class.model_family == ModelFamily.LINEAR_MODEL: pp_components.append(StandardScaler) return pp_components def _get_pipeline_base_class(problem_type): """Returns pipeline base class for problem_type""" if problem_type == ProblemTypes.BINARY: return BinaryClassificationPipeline elif problem_type == ProblemTypes.MULTICLASS: return MulticlassClassificationPipeline elif problem_type == ProblemTypes.REGRESSION: return RegressionPipeline elif problem_type == ProblemTypes.TIME_SERIES_REGRESSION: return TimeSeriesRegressionPipeline [docs]def make_pipeline(X, y, estimator, problem_type, custom_hyperparameters=None, text_columns=None): """Given input data, target data, an estimator class and the problem type, generates a pipeline class with a preprocessing chain which was recommended based on the inputs. The pipeline will be a subclass of the appropriate pipeline base class for the specified problem_type. Arguments: X (pd.DataFrame, ww.DataTable): The input data of shape [n_samples, n_features] y (pd.Series, ww.DataColumn): The target data of length [n_samples] estimator (Estimator): Estimator for pipeline problem_type (ProblemTypes or str): Problem type for pipeline to generate custom_hyperparameters (dictionary): Dictionary of custom hyperparameters, with component name as key and dictionary of parameters as the value text_columns (list): feature names which should be treated as text features. Defaults to None. Returns: class: PipelineBase subclass with dynamically generated preprocessing components and specified estimator """ X = _convert_to_woodwork_structure(X) y = _convert_to_woodwork_structure(y) problem_type = handle_problem_types(problem_type) if estimator not in get_estimators(problem_type): raise ValueError(f"{estimator.name} is not a valid estimator for problem type") preprocessing_components = _get_preprocessing_components(X, y, problem_type, text_columns, estimator) complete_component_graph = preprocessing_components + [estimator] if custom_hyperparameters and not isinstance(custom_hyperparameters, dict): raise ValueError(f"if custom_hyperparameters provided, must be dictionary. Received {type(custom_hyperparameters)}") hyperparameters = custom_hyperparameters base_class = _get_pipeline_base_class(problem_type) class GeneratedPipeline(base_class): custom_name = f"{estimator.name} w/ {' + '.join([component.name for component in preprocessing_components])}" component_graph = complete_component_graph custom_hyperparameters = hyperparameters return GeneratedPipeline [docs]def make_pipeline_from_components(component_instances, problem_type, custom_name=None, random_state=0): """Given a list of component instances and the problem type, an pipeline instance is generated with the component instances. The pipeline will be a subclass of the appropriate pipeline base class for the specified problem_type. The pipeline will be untrained, even if the input components are already trained. A custom name for the pipeline can optionally be specified; otherwise the default pipeline name will be 'Templated Pipeline'. Arguments: component_instances (list): a list of all of the components to include in the pipeline problem_type (str or ProblemTypes): problem type for the pipeline to generate custom_name (string): a name for the new pipeline random_state (int or np.random.RandomState): Random state used to intialize the pipeline. Returns: Pipeline instance with component instances and specified estimator created from given random state. Example: >>> components = [Imputer(), StandardScaler(), RandomForestClassifier()] >>> pipeline = make_pipeline_from_components(components, problem_type="binary") >>> pipeline.describe() """ for i, component in enumerate(component_instances): if not isinstance(component, ComponentBase): raise TypeError("Every element of `component_instances` must be an instance of ComponentBase") if i == len(component_instances) - 1 and not isinstance(component, Estimator): raise ValueError("Pipeline needs to have an estimator at the last position of the component list") if custom_name and not isinstance(custom_name, str): raise TypeError("Custom pipeline name must be a string") pipeline_name = custom_name problem_type = handle_problem_types(problem_type) class TemplatedPipeline(_get_pipeline_base_class(problem_type)): custom_name = pipeline_name component_graph = [c.__class__ for c in component_instances] return TemplatedPipeline({c.name: c.parameters for c in component_instances}, random_state=random_state) [docs]def generate_pipeline_code(element): """Creates and returns a string that contains the Python imports and code required for running the EvalML pipeline. Arguments: element (pipeline instance): The instance of the pipeline to generate string Python code Returns: String representation of Python code that can be run separately in order to recreate the pipeline instance. Does not include code for custom component implementation. """ # hold the imports needed and add code to end code_strings = [] if not isinstance(element, PipelineBase): raise ValueError("Element must be a pipeline instance, received {}".format(type(element))) component_graph_string = ',\n\t\t'.join([com.__class__.__name__ if com.__class__ not in all_components() else "'{}'".format(com.name) for com in element.component_graph]) code_strings.append("from {} import {}".format(element.__class__.__bases__[0].__module__, element.__class__.__bases__[0].__name__)) # check for other attributes associated with pipeline (ie name, custom_hyperparameters) pipeline_list = [] for k, v in sorted(list(filter(lambda item: item[0][0] != '_', element.__class__.__dict__.items())), key=lambda x: x[0]): if k == 'component_graph': continue pipeline_list += ["{} = '{}'".format(k, v)] if isinstance(v, str) else ["{} = {}".format(k, v)] pipeline_string = "\t" + "\n\t".join(pipeline_list) + "\n" if len(pipeline_list) else "" # create the base string for the pipeline base_string = "\nclass {0}({1}):\n" \ "\tcomponent_graph = [\n\t\t{2}\n\t]\n" \ "{3}" \ "\nparameters = {4}\n" \ "pipeline = {0}(parameters)" \ .format(element.__class__.__name__, element.__class__.__bases__[0].__name__, component_graph_string, pipeline_string, json.dumps(element.parameters, indent='\t').replace('null', 'None')) code_strings.append(base_string) return "\n".join(code_strings) def _make_stacked_ensemble_pipeline(input_pipelines, problem_type, random_state=0): """ Creates a pipeline with a stacked ensemble estimator. Arguments: input_pipelines (list(PipelineBase or subclass obj)): List of pipeline instances to use as the base estimators for the stacked ensemble. This must not be None or an empty list or else EnsembleMissingPipelinesError will be raised. problem_type (ProblemType): problem type of pipeline Returns: Pipeline with appropriate stacked ensemble estimator. """ if problem_type in [ProblemTypes.BINARY, ProblemTypes.MULTICLASS]: return make_pipeline_from_components([StackedEnsembleClassifier(input_pipelines)], problem_type, custom_name="Stacked Ensemble Classification Pipeline", random_state=random_state) else: return make_pipeline_from_components([StackedEnsembleRegressor(input_pipelines)], problem_type, custom_name="Stacked Ensemble Regression Pipeline", random_state=random_state)