import numpy as np import pandas as pd from sklearn.preprocessing import OneHotEncoder as SKOneHotEncoder from evalml.pipelines.components import ComponentBaseMeta from evalml.pipelines.components.transformers.transformer import Transformer from evalml.utils.gen_utils import ( _convert_to_woodwork_structure, _convert_woodwork_types_wrapper ) class OneHotEncoderMeta(ComponentBaseMeta): """A version of the ComponentBaseMeta class which includes validation on an additional one-hot-encoder-specific method `categories`""" METHODS_TO_CHECK = ComponentBaseMeta.METHODS_TO_CHECK + ['categories', 'get_feature_names'] [docs]class OneHotEncoder(Transformer, metaclass=OneHotEncoderMeta): """One-hot encoder to encode non-numeric data.""" name = 'One Hot Encoder' hyperparameter_ranges = {} [docs] def __init__(self, top_n=10, features_to_encode=None, categories=None, drop=None, handle_unknown="ignore", handle_missing="error", random_state=0, **kwargs): """Initalizes an transformer that encodes categorical features in a one-hot numeric array." Arguments: top_n (int): Number of categories per column to encode. If None, all categories will be encoded. Otherwise, the `n` most frequent will be encoded and all others will be dropped. Defaults to 10. features_to_encode (list(str)): List of columns to encode. All other columns will remain untouched. If None, all appropriate columns will be encoded. Defaults to None. categories (list): A two dimensional list of categories, where `categories[i]` is a list of the categories for the column at index `i`. This can also be `None`, or `"auto"` if `top_n` is not None. Defaults to None. drop (string, list): Method ("first" or "if_binary") to use to drop one category per feature. Can also be a list specifying which method to use for each feature. Defaults to None. handle_unknown (string): Whether to ignore or error for unknown categories for a feature encountered during `fit` or `transform`. If either `top_n` or `categories` is used to limit the number of categories per column, this must be "ignore". Defaults to "ignore". handle_missing (string): Options for how to handle missing (NaN) values encountered during `fit` or `transform`. If this is set to "as_category" and NaN values are within the `n` most frequent, "nan" values will be encoded as their own column. If this is set to "error", any missing values encountered will raise an error. Defaults to "error". """ parameters = {"top_n": top_n, "features_to_encode": features_to_encode, "categories": categories, "drop": drop, "handle_unknown": handle_unknown, "handle_missing": handle_missing} parameters.update(kwargs) # Check correct inputs unknown_input_options = ["ignore", "error"] missing_input_options = ["as_category", "error"] if handle_unknown not in unknown_input_options: raise ValueError("Invalid input {} for handle_unknown".format(handle_unknown)) if handle_missing not in missing_input_options: raise ValueError("Invalid input {} for handle_missing".format(handle_missing)) if top_n is not None and categories is not None: raise ValueError("Cannot use categories and top_n arguments simultaneously") self.features_to_encode = features_to_encode self._encoder = None super().__init__(parameters=parameters, component_obj=None, random_state=random_state) self._initial_state = self.random_state.get_state() @staticmethod def _get_cat_cols(X): """Get names of 'object' or 'categorical' columns in the DataFrame.""" obj_cols = [] for idx, dtype in enumerate(X.dtypes): if dtype == np.object or pd.api.types.is_categorical_dtype(dtype): obj_cols.append(X.columns.values[idx]) return obj_cols [docs] def fit(self, X, y=None): top_n = self.parameters['top_n'] X = _convert_to_woodwork_structure(X) X = _convert_woodwork_types_wrapper(X.to_dataframe()) X_t = X if self.features_to_encode is None: self.features_to_encode = self._get_cat_cols(X_t) invalid_features = [col for col in self.features_to_encode if col not in list(X.columns)] if len(invalid_features) > 0: raise ValueError("Could not find and encode {} in input data.".format(', '.join(invalid_features))) X_t = self._handle_parameter_handle_missing(X_t) if len(self.features_to_encode) == 0: categories = 'auto' elif self.parameters['categories'] is not None: categories = self.parameters['categories'] if len(categories) != len(self.features_to_encode) or not isinstance(categories[0], list): raise ValueError('Categories argument must contain a list of categories for each categorical feature') else: categories = [] for col in X_t[self.features_to_encode]: value_counts = X_t[col].value_counts(dropna=False).to_frame() if top_n is None or len(value_counts) <= top_n: unique_values = value_counts.index.tolist() else: new_random_state = np.random.RandomState() new_random_state.set_state(self._initial_state) value_counts = value_counts.sample(frac=1, random_state=new_random_state) value_counts = value_counts.sort_values([col], ascending=False, kind='mergesort') unique_values = value_counts.head(top_n).index.tolist() unique_values = np.sort(unique_values) categories.append(unique_values) # Create an encoder to pass off the rest of the computation to self._encoder = SKOneHotEncoder(categories=categories, drop=self.parameters['drop'], handle_unknown=self.parameters['handle_unknown']) self._encoder.fit(X_t[self.features_to_encode]) return self [docs] def transform(self, X, y=None): """One-hot encode the input DataFrame. Arguments: X (pd.DataFrame): Dataframe of features. y (pd.Series): Ignored. Returns: Transformed dataframe, where each categorical feature has been encoded into numerical columns using one-hot encoding. """ X_copy = _convert_to_woodwork_structure(X) X_copy = _convert_woodwork_types_wrapper(X_copy.to_dataframe()) X_copy = self._handle_parameter_handle_missing(X_copy) X_t = pd.DataFrame() # Add the non-categorical columns, untouched for col in X_copy.columns: if col not in self.features_to_encode: X_t = pd.concat([X_t, X_copy[col]], axis=1) # The call to pd.concat above changes the type of the index so we will manually keep it the same. if not X_t.empty: X_t.index = X_copy.index # Call sklearn's transform on the categorical columns if len(self.features_to_encode) > 0: X_cat = pd.DataFrame(self._encoder.transform(X_copy[self.features_to_encode]).toarray(), index=X_copy.index) X_cat.columns = self.get_feature_names() X_t = pd.concat([X_t, X_cat], axis=1) return X_t def _handle_parameter_handle_missing(self, X): """Helper method to handle the `handle_missing` parameter.""" cat_cols = self.features_to_encode if self.parameters['handle_missing'] == "error" and X.isnull().any().any(): raise ValueError("Input contains NaN") if self.parameters['handle_missing'] == "as_category": for col in cat_cols: if X[col].dtype == 'category' and pd.isna(X[col]).any(): X[col] = X[col].cat.add_categories("nan") X[col] = X[col].where(~pd.isna(X[col]), other='nan') X[cat_cols] = X[cat_cols].replace(np.nan, "nan") return X [docs] def categories(self, feature_name): """Returns a list of the unique categories to be encoded for the particular feature, in order. Arguments: feature_name (str): the name of any feature provided to one-hot encoder during fit Returns: np.ndarray: the unique categories, in the same dtype as they were provided during fit """ try: index = self.features_to_encode.index(feature_name) except Exception: raise ValueError(f'Feature "{feature_name}" was not provided to one-hot encoder as a training feature') return self._encoder.categories_[index] @staticmethod def _make_name_unique(name, seen_before): """Helper to make the name unique.""" if name not in seen_before: return name # Only modify the name if it has been seen before i = 1 name = f"{name}_{i}" while name in seen_before: name = f"{name[:name.rindex('_')]}_{i}" i += 1 return name [docs] def get_feature_names(self): """Return feature names for the categorical features after fitting. Feature names are formatted as {column name}_{category name}. In the event of a duplicate name, an integer will be added at the end of the feature name to distinguish it. For example, consider a dataframe with a column called "A" and category "x_y" and another column called "A_x" with "y". In this example, the feature names would be "A_x_y" and "A_x_y_1". Returns: np.ndarray: The feature names after encoding, provided in the same order as input_features. """ unique_names = [] seen_before = set([]) for col_index, col in enumerate(self.features_to_encode): column_categories = self.categories(col) for cat_index, category in enumerate(column_categories): # Drop categories specified by the user if self._encoder.drop_idx_ is not None and self._encoder.drop_idx_[col_index] is not None: if cat_index == self._encoder.drop_idx_[col_index]: continue # Follow sklearn naming convention but if name has been seen before # then add an int to make it unique proposed_name = self._make_name_unique(f"{col}_{category}", seen_before) unique_names.append(proposed_name) seen_before.add(proposed_name) return unique_names