import pandas as pd from evalml.objectives import get_objective from evalml.pipelines import PipelineBase from evalml.problem_types import ProblemTypes from evalml.utils.gen_utils import numeric_dtypes [docs]class RegressionPipeline(PipelineBase): """Pipeline subclass for all regression pipelines.""" problem_type = ProblemTypes.REGRESSION [docs] def fit(self, X, y): """Build a regression model. Arguments: X (pd.DataFrame or np.array): the input training data of shape [n_samples, n_features] y (pd.Series): the target training labels of length [n_samples] Returns: self """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y, pd.Series): y = pd.Series(y) if y.dtype not in numeric_dtypes: raise ValueError(f"Regression pipeline cannot handle targets with dtype: {y.dtype}") self._fit(X, y) return self [docs] def score(self, X, y, objectives): """Evaluate model performance on current and additional objectives Args: X (pd.DataFrame or np.array): data of shape [n_samples, n_features] y (pd.Series): true labels of length [n_samples] objectives (list): Non-empty list of objectives to score on Returns: dict: ordered dictionary of objective scores """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y, pd.Series): y = pd.Series(y) objectives = [get_objective(o, return_instance=True) for o in objectives] y_predicted = self.predict(X) return self._score_all_objectives(X, y, y_predicted, y_pred_proba=None, objectives=objectives)