from sklearn.preprocessing import StandardScaler as SkScaler from evalml.pipelines.components.transformers import Transformer [docs]class StandardScaler(Transformer): """Standardize features: removes mean and scales to unit variance.""" name = "Standard Scaler" hyperparameter_ranges = {} [docs] def __init__(self, random_state=0, **kwargs): parameters = {} parameters.update(kwargs) scaler = SkScaler(**parameters) super().__init__(parameters=parameters, component_obj=scaler, random_state=random_state)