from sklearn.linear_model import ElasticNet as SKElasticNet from skopt.space import Real from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes [docs]class ElasticNetRegressor(Estimator): """Elastic Net Regressor.""" name = "Elastic Net Regressor" hyperparameter_ranges = { "alpha": Real(0, 1), "l1_ratio": Real(0, 1), } model_family = ModelFamily.LINEAR_MODEL supported_problem_types = [ProblemTypes.REGRESSION] [docs] def __init__(self, alpha=0.5, l1_ratio=0.5, max_iter=1000, normalize=False, random_state=0, **kwargs): parameters = {'alpha': alpha, 'l1_ratio': l1_ratio, 'max_iter': max_iter, 'normalize': normalize} parameters.update(kwargs) en_regressor = SKElasticNet(random_state=random_state, **parameters) super().__init__(parameters=parameters, component_obj=en_regressor, random_state=random_state) @property def feature_importance(self): return self._component_obj.coef_