Source code for evalml.data_checks.id_columns_data_check

import pandas as pd

from .data_check import DataCheck
from .data_check_message import DataCheckWarning


[docs]class IDColumnsDataCheck(DataCheck): """Check if any of the features are likely to be ID columns."""
[docs] def __init__(self, id_threshold=1.0): """Check if any of the features are likely to be ID columns. Arguments: id_threshold (float): the probability threshold to be considered an ID column. Defaults to 1.0. """ if id_threshold < 0 or id_threshold > 1: raise ValueError("id_threshold must be a float between 0 and 1, inclusive.") self.id_threshold = id_threshold
[docs] def validate(self, X, y=None): """Check if any of the features are likely to be ID columns. Currently performs these simple checks: - column name is "id" - column name ends in "_id" - column contains all unique values (and is not float / boolean) Arguments: X (pd.DataFrame): The input features to check threshold (float): the probability threshold to be considered an ID column. Defaults to 1.0 Returns: A dictionary of features with column name or index and their probability of being ID columns Example: >>> df = pd.DataFrame({ ... 'df_id': [0, 1, 2, 3, 4], ... 'x': [10, 42, 31, 51, 61], ... 'y': [42, 54, 12, 64, 12] ... }) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [DataCheckWarning("Column 'df_id' is 100.0% or more likely to be an ID column", "IDColumnsDataCheck")] """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) col_names = [str(col) for col in X.columns.tolist()] cols_named_id = [col for col in col_names if (col.lower() == "id")] # columns whose name is "id" id_cols = {col: 0.95 for col in cols_named_id} non_id_types = ['float16', 'float32', 'float64', 'bool'] X = X.select_dtypes(exclude=non_id_types) check_all_unique = (X.nunique() == len(X)) cols_with_all_unique = check_all_unique[check_all_unique].index.tolist() # columns whose values are all unique id_cols.update([(str(col), 1.0) if col in id_cols else (str(col), 0.95) for col in cols_with_all_unique]) col_ends_with_id = [col for col in col_names if str(col).lower().endswith("_id")] # columns whose name ends with "_id" id_cols.update([(col, 1.0) if col in id_cols else (col, 0.95) for col in col_ends_with_id]) id_cols_above_threshold = {key: value for key, value in id_cols.items() if value >= self.id_threshold} warning_msg = "Column '{}' is {}% or more likely to be an ID column" return [DataCheckWarning(warning_msg.format(col_name, self.id_threshold * 100), self.name) for col_name in id_cols_above_threshold]