from sklearn.ensemble import ExtraTreesClassifier as SKExtraTreesClassifier from skopt.space import Integer from evalml.model_family import ModelFamily from evalml.pipelines.components.estimators import Estimator from evalml.problem_types import ProblemTypes [docs]class ExtraTreesClassifier(Estimator): """Extra Trees Classifier.""" name = "Extra Trees Classifier" hyperparameter_ranges = { "n_estimators": Integer(10, 1000), "max_features": ["auto", "sqrt", "log2"], "max_depth": Integer(4, 10) } model_family = ModelFamily.EXTRA_TREES supported_problem_types = [ProblemTypes.BINARY, ProblemTypes.MULTICLASS] [docs] def __init__(self, n_estimators=100, max_features="auto", max_depth=6, min_samples_split=2, min_weight_fraction_leaf=0.0, n_jobs=-1, random_state=0, **kwargs): parameters = {"n_estimators": n_estimators, "max_features": max_features, "max_depth": max_depth, "min_samples_split": min_samples_split, "min_weight_fraction_leaf": min_weight_fraction_leaf, "n_jobs": n_jobs} parameters.update(kwargs) et_classifier = SKExtraTreesClassifier(random_state=random_state, **parameters) super().__init__(parameters=parameters, component_obj=et_classifier, random_state=random_state)