evalml.data_checks.InvalidTargetDataCheck.validate¶
-
InvalidTargetDataCheck.
validate
(X, y)[source]¶ Checks if the target labels contain missing or invalid data.
- Parameters
X (pd.DataFrame, pd.Series, np.array, list) – Features. Ignored.
y – Target labels to check for invalid data.
- Returns
list with DataCheckErrors if any invalid data is found in target labels.
- Return type
list (DataCheckError)
Example
>>> X = pd.DataFrame({}) >>> y = pd.Series([0, 1, None, None]) >>> target_check = InvalidTargetDataCheck() >>> assert target_check.validate(X, y) == [DataCheckError("2 row(s) (50.0%) of target values are null", "InvalidTargetDataCheck")]