evalml.data_checks.IDColumnsDataCheck.validate¶
-
IDColumnsDataCheck.
validate
(X, y=None)[source]¶ Check if any of the features are likely to be ID columns. Currently performs these simple checks:
column name is “id”
column name ends in “_id”
column contains all unique values (and is not float / boolean)
- Parameters
X (pd.DataFrame) – The input features to check
threshold (float) – the probability threshold to be considered an ID column. Defaults to 1.0
- Returns
A dictionary of features with column name or index and their probability of being ID columns
Example
>>> df = pd.DataFrame({ ... 'df_id': [0, 1, 2, 3, 4], ... 'x': [10, 42, 31, 51, 61], ... 'y': [42, 54, 12, 64, 12] ... }) >>> id_col_check = IDColumnsDataCheck() >>> assert id_col_check.validate(df) == [DataCheckWarning("Column 'df_id' is 100.0% or more likely to be an ID column", "IDColumnsDataCheck")]