evalml.tuners.RandomSearchTuner¶
-
class
evalml.tuners.
RandomSearchTuner
(pipeline_hyperparameter_ranges, random_state=0, with_replacement=False, replacement_max_attempts=10)[source]¶ Random Search Optimizer.
Example
>>> tuner = RandomSearchTuner({'My Component': {'param a': [0.0, 10.0], 'param b': ['a', 'b', 'c']}}, random_state=42) >>> proposal = tuner.propose() >>> assert proposal.keys() == {'My Component'} >>> assert proposal['My Component'] == {'param a': 3.7454011884736254, 'param b': 'c'}
Methods
Sets up check for duplication if needed.
Not applicable to random search tuner as generated parameters are not dependent on scores of previous parameters.
Checks if it is possible to generate a set of valid parameters.
Generate a unique set of parameters.