evalml.pipelines.components.PerColumnImputer¶
-
class
evalml.pipelines.components.
PerColumnImputer
(impute_strategies=None, default_impute_strategy='most_frequent', random_state=0, **kwargs)[source]¶ Imputes missing data according to a specified imputation strategy per column
-
name
= 'Per Column Imputer'¶
-
model_family
= 'none'¶
-
hyperparameter_ranges
= {}¶
-
default_parameters
= {'default_impute_strategy': 'most_frequent', 'impute_strategies': None}¶
Instance attributes
parameters
Returns the parameters which were used to initialize the component
Methods:
Initializes a transformer that imputes missing data according to the specified imputation strategy per column.”
Constructs a new component with the same parameters
Describe a component and its parameters
Fits imputers on data X
Fits imputer on data X then imputes missing values in X
Transforms data X by imputing missing values
-