evalml.pipelines.components.LinearRegressor¶

-
class
evalml.pipelines.components.LinearRegressor(fit_intercept=True, normalize=False, n_jobs=-1, random_state=0, **kwargs)[source]¶ Linear Regressor.
-
name= 'Linear Regressor'¶
-
model_family= 'linear_model'¶
-
supported_problem_types= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges= {'fit_intercept': [True, False], 'normalize': [True, False]}¶
-
default_parameters= {'fit_intercept': True, 'n_jobs': -1, 'normalize': False}¶
Instance attributes
feature_importanceReturns importance associated with each feature.
parametersReturns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters
Describe a component and its parameters
Fits component to data
Make predictions using selected features.
Make probability estimates for labels.
-