evalml.pipelines.components.CatBoostRegressor¶
-
class
evalml.pipelines.components.
CatBoostRegressor
(n_estimators=1000, eta=0.03, max_depth=6, bootstrap_type=None, random_state=0, **kwargs)[source]¶ CatBoost Regressor, a regressor that uses gradient-boosting on decision trees. CatBoost is an open-source library and natively supports categorical features.
For more information, check out https://catboost.ai/
-
name
= 'CatBoost Regressor'¶
-
model_family
= 'catboost'¶
-
supported_problem_types
= [<ProblemTypes.REGRESSION: 'regression'>]¶
-
hyperparameter_ranges
= {'eta': Real(low=1e-06, high=1, prior='uniform', transform='identity'), 'max_depth': Integer(low=1, high=16, prior='uniform', transform='identity'), 'n_estimators': Integer(low=10, high=1000, prior='uniform', transform='identity')}¶
-
default_parameters
= {'bootstrap_type': None, 'eta': 0.03, 'max_depth': 6, 'n_estimators': 1000}¶
Instance attributes
SEED_MAX
SEED_MIN
feature_importance
Returns importance associated with each feature.
parameters
Returns the parameters which were used to initialize the component
Methods:
Initialize self.
Constructs a new component with the same parameters
Describe a component and its parameters
Build a model
Make predictions using selected features.
Make probability estimates for labels.
-