Source code for evalml.pipelines.regression_pipeline

from collections import OrderedDict

import pandas as pd

from evalml.objectives import get_objective
from evalml.pipelines import PipelineBase
from evalml.problem_types import ProblemTypes


[docs]class RegressionPipeline(PipelineBase): """Pipeline subclass for all regression pipelines.""" problem_type = ProblemTypes.REGRESSION
[docs] def score(self, X, y, objectives): """Evaluate model performance on current and additional objectives Args: X (pd.DataFrame or np.array) : data of shape [n_samples, n_features] y (pd.Series) : true labels of length [n_samples] objectives (list): Non-empty list of objectives to score on Returns: dict: ordered dictionary of objective scores """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) if not isinstance(y, pd.Series): y = pd.Series(y) objectives = [get_objective(o) for o in objectives] scores = OrderedDict() y_predicted = self.predict(X) for objective in objectives: if objective.score_needs_proba: raise ValueError("Objective `{}` does not support score_needs_proba".format(objective.name)) score = self._score(X, y, y_predicted, objective) scores.update({objective.name: score}) return scores