Source code for evalml.pipelines.components.transformers.transformer
import pandas as pd
from evalml.exceptions import MethodPropertyNotFoundError
from evalml.model_family import ModelFamily
from evalml.pipelines.components import ComponentBase
[docs]class Transformer(ComponentBase):
"""A component that may or may not need fitting that transforms data.
These components are used before an estimator.
To implement a new Transformer, define your own class which is a subclass of Transformer, including
a name and a list of acceptable ranges for any parameters to be tuned during the automl search (hyperparameters).
Define an `__init__` method which sets up any necessary state and objects. Make sure your `__init__` only
uses standard keyword arguments and calls `super().__init__()` with a parameters dict. You may also override the
`fit`, `transform`, `fit_transform` and other methods in this class if appropriate.
To see some examples, check out the definitions of any Transformer component.
"""
model_family = ModelFamily.NONE
[docs] def transform(self, X, y=None):
"""Transforms data X
Arguments:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Input Labels
Returns:
pd.DataFrame: Transformed X
"""
try:
X_t = self._component_obj.transform(X)
except AttributeError:
raise MethodPropertyNotFoundError("Transformer requires a transform method or a component_obj that implements transform")
if not isinstance(X_t, pd.DataFrame) and isinstance(X, pd.DataFrame):
return pd.DataFrame(X_t, columns=X.columns, index=X.index)
return pd.DataFrame(X_t)
[docs] def fit_transform(self, X, y=None):
"""Fits on X and transforms X
Arguments:
X (pd.DataFrame): Data to fit and transform
y (pd. DataFrame): Labels to fit and transform
Returns:
pd.DataFrame: Transformed X
"""
try:
X_t = self._component_obj.fit_transform(X, y)
except AttributeError:
try:
self.fit(X, y)
X_t = self.transform(X, y)
except MethodPropertyNotFoundError as e:
raise e
if not isinstance(X_t, pd.DataFrame) and isinstance(X, pd.DataFrame):
return pd.DataFrame(X_t, columns=X.columns, index=X.index)
return pd.DataFrame(X_t)