Source code for evalml.pipelines.components.transformers.imputers.simple_imputer
import pandas as pd
from sklearn.impute import SimpleImputer as SkImputer
from evalml.pipelines.components.transformers import Transformer
[docs]class SimpleImputer(Transformer):
"""Imputes missing data according to a specified imputation strategy."""
name = 'Simple Imputer'
hyperparameter_ranges = {"impute_strategy": ["mean", "median", "most_frequent"]}
[docs] def __init__(self, impute_strategy="most_frequent", fill_value=None, random_state=0, **kwargs):
"""Initalizes an transformer that imputes missing data according to the specified imputation strategy."
Arguments:
impute_strategy (string): Impute strategy to use. Valid values include "mean", "median", "most_frequent", "constant" for
numerical data, and "most_frequent", "constant" for object data types.
fill_value (string): When impute_strategy == "constant", fill_value is used to replace missing data.
Defaults to 0 when imputing numerical data and "missing_value" for strings or object data types.
"""
parameters = {"impute_strategy": impute_strategy,
"fill_value": fill_value}
parameters.update(kwargs)
imputer = SkImputer(strategy=impute_strategy,
fill_value=fill_value,
**kwargs)
self._all_null_cols = None
super().__init__(parameters=parameters,
component_obj=imputer,
random_state=random_state)
[docs] def fit(self, X, y=None):
"""Fits imputer to data
Arguments:
X (pd.DataFrame or np.array): the input training data of shape [n_samples, n_features]
y (pd.Series, optional): the target training labels of length [n_samples]
Returns:
self
"""
if not isinstance(X, pd.DataFrame):
X = pd.DataFrame(X)
self._component_obj.fit(X, y)
self._all_null_cols = set(X.columns) - set(X.dropna(axis=1, how='all').columns)
return self
[docs] def transform(self, X, y=None):
"""Transforms data X by imputing missing values
Arguments:
X (pd.DataFrame): Data to transform
y (pd.Series, optional): Input Labels
Returns:
pd.DataFrame: Transformed X
"""
if self._all_null_cols is None:
raise RuntimeError("Must fit transformer before calling transform!")
X_t = self._component_obj.transform(X)
if not isinstance(X_t, pd.DataFrame) and isinstance(X, pd.DataFrame):
# skLearn's SimpleImputer loses track of column type, so we need to restore
X_null_dropped = X.drop(self._all_null_cols, axis=1)
if X_null_dropped.empty:
return pd.DataFrame(X_t, columns=X_null_dropped.columns)
return pd.DataFrame(X_t, columns=X_null_dropped.columns).astype(X_null_dropped.dtypes.to_dict())
return pd.DataFrame(X_t)
[docs] def fit_transform(self, X, y=None):
"""Fits on X and transforms X
Arguments:
X (pd.DataFrame): Data to fit and transform
y (pd. DataFrame): Labels to fit and transform
Returns:
pd.DataFrame: Transformed X
"""
return self.fit(X, y).transform(X, y)