Source code for evalml.pipelines.components.estimators.regressors.et_regressor
from sklearn.ensemble import ExtraTreesRegressor as SKExtraTreesRegressor
from skopt.space import Integer
from evalml.model_family import ModelFamily
from evalml.pipelines.components.estimators import Estimator
from evalml.problem_types import ProblemTypes
[docs]class ExtraTreesRegressor(Estimator):
"""Extra Trees Regressor."""
name = "Extra Trees Regressor"
hyperparameter_ranges = {
"n_estimators": Integer(10, 1000),
"max_features": ["auto", "sqrt", "log2"],
"max_depth": Integer(4, 10)
}
model_family = ModelFamily.EXTRA_TREES
supported_problem_types = [ProblemTypes.REGRESSION]
[docs] def __init__(self,
n_estimators=100,
max_features="auto",
max_depth=6,
min_samples_split=2,
min_weight_fraction_leaf=0.0,
n_jobs=-1,
random_state=0,
**kwargs):
parameters = {"n_estimators": n_estimators,
"max_features": max_features,
"max_depth": max_depth,
"min_samples_split": min_samples_split,
"min_weight_fraction_leaf": min_weight_fraction_leaf,
"n_jobs": n_jobs}
parameters.update(kwargs)
et_regressor = SKExtraTreesRegressor(random_state=random_state,
**parameters)
super().__init__(parameters=parameters,
component_obj=et_regressor,
random_state=random_state)