Source code for evalml.data_checks.highly_null_data_check

import pandas as pd

from .data_check import DataCheck
from .data_check_message import DataCheckWarning


[docs]class HighlyNullDataCheck(DataCheck): """Checks if there are any highly-null columns in the input."""
[docs] def __init__(self, pct_null_threshold=0.95): """Checks if there are any highly-null columns in the input. Arguments: pct_null_threshold(float): If the percentage of NaN values in an input feature exceeds this amount, that feature will be considered highly-null. Defaults to 0.95. """ if pct_null_threshold < 0 or pct_null_threshold > 1: raise ValueError("pct_null_threshold must be a float between 0 and 1, inclusive.") self.pct_null_threshold = pct_null_threshold
[docs] def validate(self, X, y=None): """Checks if there are any highly-null columns in the input. Arguments: X (pd.DataFrame, pd.Series, np.array, list) : features y : Ignored. Returns: list (DataCheckWarning): list with a DataCheckWarning if there are any highly-null columns. Example: >>> df = pd.DataFrame({ ... 'lots_of_null': [None, None, None, None, 5], ... 'no_null': [1, 2, 3, 4, 5] ... }) >>> null_check = HighlyNullDataCheck(pct_null_threshold=0.8) >>> assert null_check.validate(df) == [DataCheckWarning("Column 'lots_of_null' is 80.0% or more null", "HighlyNullDataCheck")] """ if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X) percent_null = (X.isnull().mean()).to_dict() if self.pct_null_threshold == 0.0: all_null_cols = {key: value for key, value in percent_null.items() if value > 0.0} warning_msg = "Column '{}' is more than 0% null" return [DataCheckWarning(warning_msg.format(col_name), self.name) for col_name in all_null_cols] else: highly_null_cols = {key: value for key, value in percent_null.items() if value >= self.pct_null_threshold} warning_msg = "Column '{}' is {}% or more null" return [DataCheckWarning(warning_msg.format(col_name, self.pct_null_threshold * 100), self.name) for col_name in highly_null_cols]