EvalML
v0.10.0

Getting Started

  • What is EvalML
  • Installation

Objective functions

  • Overview
  • Fraud Prediction
  • Lead Scoring
  • Defining Custom Objectives

Automated Machine Learning

  • Setting up pipeline search
  • Exploring search results
  • Regression Example
  • Overfitting Protection

Pipelines and Components

  • Pipelines
  • Components
  • Custom Pipelines

Data Checks

  • Overview
  • Using Data Checks in AutoML

Resources

  • Changelog
  • API Reference
    • Demo Datasets
    • Preprocessing
    • AutoML
      • AutoML Search Classes
        • evalml.automl.AutoClassificationSearch
        • evalml.automl.AutoRegressionSearch
        • evalml.automl.AutoSearchBase
      • AutoML Algorithm Classes
    • Pipelines
    • Components
    • Objective Functions
    • Problem Types
    • Model Family
    • Tuners
    • Data Checks
    • Utils
  • FAQ
EvalML
  • Docs »
  • API Reference »
  • evalml.automl.AutoSearchBase »
  • evalml.automl.AutoSearchBase.search
  • Edit on GitHub

evalml.automl.AutoSearchBase.search¶

AutoSearchBase.search(X, y, data_checks=None, feature_types=None, raise_errors=True, show_iteration_plot=True)[source]¶

Find best classifier

Parameters
  • X (pd.DataFrame) – the input training data of shape [n_samples, n_features]

  • y (pd.Series) – the target training labels of length [n_samples]

  • feature_types (list, optional) – list of feature types, either numerical or categorical. Categorical features will automatically be encoded

  • raise_errors (boolean) – If True, raise errors and exit search if a pipeline errors during fitting. If False, set scores for the errored pipeline to NaN and continue search. Defaults to True.

  • show_iteration_plot (boolean, True) – Shows an iteration vs. score plot in Jupyter notebook. Disabled by default in non-Jupyter enviroments.

  • data_checks (DataChecks, None) – A collection of data checks to run before searching for the best classifier. If data checks produce any errors, an exception will be thrown before the search begins. If None, uses DefaultDataChecks. Defaults to None.

Returns

self

Next Previous

© Copyright 2019, Feature Labs, Inc. Revision a390d090.